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TeV Blazars Introduction

Radio-loud active galactic nucleus with a relativistic jet
pointed directly towards the Earth.

Very broadband emitter — all the way from Radio to TeV
Gamma Rays

Spectra dominated by continua, not lines

Non-thermal emission — continua are fat-tailed



TeV Blazars Introduction (cont)

Radiation Produced by High Energy Electrons

Critical energy of synchrotron radiation in units of rest
mass energy given by:

€,= B
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Radiated power in units of rest mass energy given by:
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Also: synchrotron-self-compton (SSC) in Thompson
Regime
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Quadratic Variations
In the case of increasing electron injection,

synchrotron responds linearly, SSC responds
quadratically.
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Fig. 6a and b, Correlation of the RXTE energy fluxes at EFxy = 3 keV



Nature Is Not So Simple

* On the slides that follow, we present some
variability events in TeV blazars exhibiting some
characteristics that cannot be explained by
simply increasing the rate at which electrons are
Injected.
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Nature Is Not So Simple

* Not only is variability not always quadratic, but
peaks and edges move to different frequencies
and change slope.



Our Model

Two zones — acceleration and radiation.

-1

Electrons in acceleration zone accelerate with rate (t’,.)
and escape into the radiation zone with rate(xt’, )"

Electrons in radiation zone cool by radiation and are not
accelerated, escaping with rate(t...)".

No photons from acceleration zone

Photons and magnetic field from radiation zone cool
acceleration zone

We consider steady-state electron and radiation
distributions



Our Model (cont)

A population of electrons subject to no external forces and
escaping with time constant tau obeys
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Electrons accelerated by magnetic shock gain energy
proportional to their own energy with some characteristic
time

8 |
n 40 ((y-—

1
ot O0OY Jn)+

= ——n=0(y)

acc esc

Two characteristic energies
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More Consequences (slightly less simple)

Increases in the size of the electron distribution produce
more photons. If photon field E. density comparable to
magnetic, should decrease maximum electron energy
and gamma break. In particular, y (U, )"

total )

Increases in the magnetic field energy density should
decrease the maximum electron energy and should shift
high-energy spectrum components redwards.

Increases In acceleration rate should increase maximum
electron energy. In particular, y,.c(t’..)"

Increases in acceleration rate should harden spectrum in
high energy region. In particular, ,.;,*
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Case 1: Fix Maximum Electron Energy
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Notice peaks shift redwards at high compton dominance — not observed.

Peaks stay at same frequency at low compton dominance — observed,
quadratic works.



Case 2: Allow Feedback Cooling
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Notice high-energy component varies more strongly than low-energy as
before, but maximum energy and other spectrum features shift redwards due
to feedback — also not observed.

Evidence Against Electron-Injection-Only Flares



Case 3: Vary Electron Injection & B Field In
Equipartition
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Redwards shift even more pronounced — not observed.



Case 5: Increase Acceleration Rate, Hold
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Maximum energy increases, spectrum features move
bluewards, compton dominance increases slightly — in

qualitative agreement with observation.



Case 6: Increase Acceleration Rate
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Maximum energy increases, spectrum features move
bluewards, spectrum hardens, compton dominance increases
slightly.



Case 7: Increase Acceleration Rate, High
Minimum Electron Energy
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Low Energy Tails unaffected by hardening of spectrum.
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Case 4: Vary Magnetic Field
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Note strong redwards shift, and decrease in compton
dominance. On blue curve, second-order SSC no longer
suppressed by Klein-Nishina — also not observed.



Start with the observational situation, give a couple of plots.

So far, theory: electron injection flares -> quadratic behavior, why

1. Even in this context there is place for superquadratic (show a plot)
2. Model description and kinetic equation, equation for tacc from kirk.
3. Even for gmax fixed, gbreak decreases. plot.

4. now let gmax change, because tacc is fixed. plot.

5. Let injection constant and vary tacc. plot.

6. Conclusion: do not expect quadratic variations only.

..... Check the same for equipartition flares and rule them out.
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